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Abstract—As basic elements in program, variables convey
essential information that is critical for program comprehension
and maintenance. However, understanding the meanings of
variables in program is not always easy for developers, since
poor-quality variable names are prevalent while such variable
are less informative for program comprehension. Therefore, in
this paper, we target at generating concise natural language
explanations for variables to facilitate program comprehension.
In particular, there are two challenges in variable explanation
generation, including the lack of training data and the association
with complex code contexts around the variable. To address
these issues, we propose a novel approach ZEROVAR, which
leverages code pre-trained models and zero-shot prompt learning
to generate explanations for the variable based on its code con-
text. ZEROVAR contains two stages: (i) a pre-training stage that
continually pre-trains a base model (i.e., CodeT5) to recover the
randomly-masked parameter descriptions in method docstrings;
and (ii) a zero-shot prompt learning stage that leverages the
pre-trained model to generate explanations for a given variable
via the prompt constructed with the variable and its belonging
method context.

We then extensively evaluate the quality and usefulness of
the variable explanations generated by ZEROVAR. We construct
an evaluation dataset of 773 variables and their reference
explanations. Our results show that ZEROVAR can generate
higher-quality explanations than baselines, not only on automated
metrics such as BLEU and ROUGE, but also on human metrics
such as correctness, completeness, and conciseness. Moreover, we
further assess the usefulness of ZEROVAR-generated explanations
on two downstream tasks related to variable naming quality, i.e.,
abbreviation expansion and spelling correction. For abbreviation
expansion, the generated variable explanations can help improve
the present rate (+13.1%), precision (+3.6%), and recall (+10.0%)
of the state-of-the-art abbreviation explanation approach. For
spelling correction, by using the generated explanations we can
achieve higher hit@1 (+162.9%) and hit@3 (+49.6%) than the
recent variable representation learning approach.

Index Terms—variable explanation, naming quality, code pre-
trained models, prompt learning

I. INTRODUCTION

Variables play a critical role in programming languages by
serving as the basic building blocks for storing and manipu-
lating data within software programs. Beyond their functional
role, variables also provide essential information that supports
program comprehension and maintenance by conveying the
meaning of the data they store. Properly assigning meaning
to variables is crucial and involves selecting names that
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accurately reflect the purpose and significance of the data they
represent. By doing so, other developers can reduce the time
and effort required for debugging, maintenance, and reuse by
quickly grasping the intent of code.

However, poor-quality variable names are prevalent in prac-
tice, since naming variables appropriately based on their mean-
ings is not a simple task for developers, which should not only
select proper descriptive nouns or noun phrases but should
also ensure the consistency and conciseness in naming [1].
As a result, it is common that poor-quality variable names
are introduced into program due to the developer oversight,
time constraints, or lack of clarity in requirements. Such poor-
quality variable names increase the difficulty for developers
to understand the meaning of the variables, which further
leads to decreased readability and maintainability of the whole
program.

Therefore, in this work, we propose to generate concise
natural language explanations for variables, so as to facilitate
program comprehension and maintenance. Although there are
already existing works that generate explanations for coarse-
grained code elements (such as methods or blocks) [2], [3],
[4], [5], [6], [7], we still argue that generating variable-
level explanation is necessarily beneficial, since such fine-
grained explanations could contain detailed information that is
complementary to coarse-grained explanations. For example,
variable-specific refactoring (i.e., variable rename) and bug lo-
calization can benefit from better variable comprehension [8],
[9]. However, generating variable explanations can be very
challenging. First, different from coarse-grained explanation
generation (e.g., method explanation) which has sufficient
available method-comment pairs as training data, there is a
lack of high-quality training data for variable explanations in
the wild, since it is verbose and uncommon for developers to
write such fine-grained explanations in practice. Even there
might be some inline comments within the code, they do not
necessarily align with specific variables in the code [10], [11].
Second, the variable names alone cannot provide sufficient
information to infer their meaning, e.g., it is common that
two variables with a same name but in the different code
contexts have different meanings at all. Therefore, generating
precise explanations for a variable should be fully aware of
the complex code context around the variable.

To address the aforementioned challenges, our idea is to use
a code pre-trained model as a code semantic knowledge base,



and generate natural language explanations for variables using
zero-shot prompt learning. Prompt learning is an emerging
paradigm for pre-trained models, which can effectively tackle
the few- or zero-shot issues in downstream problems [12]. Its
success lies in modeling downstream problems in the same
form as the pre-training objectives, and constructing appropri-
ate prompt templates to facilitate knowledge transfer between
pre-training objectives and downstream problems [13]. More
specifically, we observe that methods often have corresponding
docstrings (e.g., Javadoc comments in Java), which describe
the functionality of the entire method contexts and the method
parameters. We can use such methods with docstrings to pre-
train a model that can generate parameter descriptions. Since
variables and parameters are similar in form and functionality,
we can treat variables as a special type of parameter and use
zero-shot prompt learning to solve the variable explanation
problem (i.e., the downstream problem) by aligning it to pa-
rameter description generation (i.e., the pre-training objective).

Our proposed approach, called ZEROVAR, aims to gener-
ate natural language explanations for variables via zero-shot
prompt learning. The approach consists of two stages: (i)
continual pre-training for parameter description generation,
and (ii) zero-shot prompt learning for variable explanation
generation. During the continual pre-training stage, we employ
CodeT5 [14] as our base model, which can process bimodal
input (i.e., method docstring and code) and support varying-
length description generation. We continually pre-train the
base model by using description masking objective, which
randomly masks parameter descriptions in method docstrings
and have the model learn to recover them. During the zero-
shot prompt learning stage, given a method and a variable that
requires explanation, we first use the Unixcoder model [15] to
generate a docstring for the method, then insert the variable
into the docstring. This process allows us to create a prompt
where the variable is simulated as a pseudo parameter, which
the continually pre-trained CodeT5 can utilize to generate the
corresponding explanation for the variable.

We then extensively evaluate the quality and usefulness of
the variable explanations generated by ZEROVAR. For the
quality assessment, we construct a reference dataset of 773
variables and their reference explanations, and then apply
ZEROVAR to generate variable explanations for the variables
in the dataset. The results show that ZEROVAR substantially
outperforms the baseline model (i.e., the base CodeT5 model)
on different automated metrics such as BLEU [16] and
ROUGE [17]. Moreover, we conduct a manual evaluation to
compare the quality of the variable explanations generated by
ZEROVAR, the ones generated by the baseline model, and the
reference explanations in the dataset. The results show that
the explanations generated by ZEROVAR are more correct,
complete, and concise for manually understanding the meaning
of variables. For the usefulness assessment, we investigate the
usefulness of the variable explanations generated by ZEROVAR
in two downstream tasks related to variable naming quality
improvement, i.e., abbreviation expansion and spelling cor-
rection. For abbreviation expansion, we leverage the generated

variable explanations as additional contexts and find they can
help improve the present rate (+13.1%), precision (+3.6%),
and recall (+10.0%) of state-of-the-art abbreviation explana-
tion approach [18] on a dataset containing 868 abbreviation
instances. For spelling correction, we apply a simple rule to
select corrections from the generated variable explanations and
achieve higher hit@1 (+162.9%) and hit@3 (+49.6%) than
a recent variable representation learning approach [19] on a
dataset containing 1,023 misspelling instances.

To summarize, this paper makes the following contributions:
• A novel approach ZEROVAR that automatically generates

variable explanations based on code contexts by leveraging
code pre-trained models with zero-shot prompt learning;

• Extensive evaluation that demonstrate the high quality of
the variable explanations generated by ZEROVAR in terms
of both automated metrics and human evaluation metrics;

• Extensive evaluation on two downstream tasks (i.e., ab-
breviation expansion and spelling correction) that confirm
the usefulness of the variable explanations generated by
ZEROVAR for improving naming quality of variables.

II. MOTIVATING EXAMPLE

The code example presented in Figure 1(a) is extracted
from the accepted answer of a Stack Overflow question that
demonstrates how to adjust the hue1 of a drawable using color
matrix. Although the code is functionally correct, its reusabil-
ity is sometimes hindered by difficulties in understanding the
true meaning of certain variables. For instance, Figure 1(b)
showcases two questions asked by other developers regarding
the meaning of the variables lumR, lumG, and lumB and
their corresponding values. It is noteworthy that the prefix
“lum” in the three variables stands for “luminance”, and the
values relate to calculating relative luminance from linear RGB
components2. For developers lacking awareness that the pre-
fixes “lum” and “r” signify “the luminance” and “red color”,
respectively, the task of locating pertinent resources (e.g.,
Wikipedia pages) and comprehending the underlying prin-
ciples associated with these variables becomes challenging.
Therefore, providing developers with an explanation for the
“lum” and “r” in the variable can enhance their understanding
and enable them to reuse the code more effectively.

On the other hand, leveraging code pre-trained models such
as Unixcoder [15] allows us to generate a docstring for the
code example, as shown in Figure 2. Interestingly, the model
generates a more descriptive and accurate description for the
parameter value, using the phrase “The hue”, which is more
consistent with the true meaning that the parameter should
convey. This success in generating an accurate description for
the parameter is due to the model’s ability to learn and leverage
knowledge about the semantic relationship between parameters
and code context during pre-training. Furthermore, given that
variables share functional and formal similarities with param-
eters, they can be treated as a special type of parameters. As a

1https://stackoverflow.com/questions/4354939
2https://en.wikipedia.org/wiki/Relative luminance



(a) Code Example in Accepted Answer

(b) Developer Questions on the Code Example

Figure 1. Stack Overflow Code Example and User Questions

Figure 2. Docstring Generated for the Code Example by Unixcoder

result, we are motivated to utilize code pre-trained models
as code semantic knowledge bases and design appropriate
approaches (e.g., prompt learning) to activate the models’
capacity for explaining variables. For instance, assume that
the code snippet depicted in Figure 3 is utilized during pre-
training. In this case, the code pre-trained models can learn the
association between the parameter and code context, such as
the “lum” in the code refers to “luminance” according to the
descriptions of the method and parameters. When presented
with the code in Figure 1(a), which is contextually similar
(both related to “hue” and “color”), the models can potentially
deduce that the meaning of “lum” is “luminance” if it is treated
as a parameter.

III. APPROACH

In this section, we present a novel approach called ZE-
ROVAR for addressing the variable explanation problem, which
can be considered a type of parameter description generation
task. The proposed approach consists of two key stages:
continual pre-training for parameter description generation and
zero-shot prompt learning for variable explanation generation,
as shown in Figure 4.

The continual pre-training stage is designed to improve the
model’s ability to generate accurate parameter descriptions.
It involves continually pre-training a base model on a large
corpus of code snippets using the description masking ob-

Figure 3. Another Code Snippet about Hue and Luminance
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Figure 4. Approach Overview

jective, a variant of span masking. This process enables the
model to acquire extensive knowledge of parameter usages and
meanings, which can later be utilized in generating variable
explanations.

The zero-shot prompt learning stage is responsible for gen-
erating variable explanations using the continually pre-trained
model without any fine-tuning on specific labeled data for
the variable explanation task. This is achieved by simulating
the given variable as a special parameter and automatically
constructing a prompt in the same format as the input of
the description masking objective. The continually pre-trained
model is then utilized to generate explanations for the variable
based on the prompt.

A. Continual Pre-Training for Parameter Description Gener-
ation

As stated previously, obtaining training data for directly
explaining variables is challenging; however, we can leverage
pre-trained models’ ability to generate parameter descriptions.
While no pre-trained model exists explicitly trained for param-
eter description generation, training data for this task is readily
available as many methods have corresponding docstrings
that contain parameter descriptions. Therefore, we begin by
selecting a base pre-trained model and utilizing continual pre-
training to enhance its ability to generate parameter descrip-
tions.

1) Pre-training Objective: The continual pre-training ap-
proach employs a description masking objective, which is
a variant of the span masking objective commonly used
in pre-trained models such as T5 [20], CodeT5 [14], and
Unixcoder [15]. The original span masking objective involves
randomly masking spans with arbitrary lengths in the source
input, such as method code with docstring, and then requires
the model to recover the original content by predicting the
masked spans. For our parameter description generation task,



we adapt this objective by limiting the masked spans to param-
eter descriptions in docstrings. Specifically, given a method
and its corresponding docstring, we randomly mask some
parameter descriptions in the docstring with the placeholder
<MASK>, and require the model to recover the masked
descriptions based on the noised docstring and the code
context.

2) Base Model Selection: To date, most state-of-the-art pre-
trained language models are based on the Transformer archi-
tecture [21], an encoder-decoder model, we therefore choose
this architecture as the foundation for our parameter descrip-
tion generation model. Meanwhile, recent advancements in the
field have led to the development of numerous pre-trained code
models (e.g., CodeBERT [22] and CodeT5 [14]), which have
been shown to effectively capture rich code information and
achieve promising results in downstream tasks. Thus, instead
of training a model from scratch, we select CodeT53 as the
base model and continue pre-training it for the purpose of
generating parameter descriptions. We choose CodeT5 based
on the following two criteria.

• Bimodal Input. Parameter descriptions are typically writ-
ten in natural language and included in docstrings in
the form of “@param [paramName] [description]” (e.g.,
“@param lum The min and max luminance” in Figure 3).
Therefore, an effective pre-trained model for generating
parameter descriptions must be able to process both natural
language docstrings and code as input. We treat code
and docstrings as separate input modalities and expect the
model to learn the relationship and complex interactions
between them. In this way, the model can generate natural
language descriptions for parameters based on a conpre-
hensive understanding of the code. For example, if the
description of “lum” in Figure 3 is masked, the model must
be able to predict it based on the remaining docstring and
the code context.

• Varying-length Description. As parameter descriptions
can have varying lengths, an effective pre-trained model
for generating them must be able to control the number
of tokens it needs to generate based on each unique
code context. In other words, the length of the predicted
description cannot be predetermined. For instance, the de-
scriptions of “input” and “lum” in Figure 3 have different
lengths, so we cannot pre-define a fixed length for each
masked description. This requirement rules out encoder-
only models (i.e., models that include only the encoder
of the Transformer) such as CodeBERT, as they must
determine the length of the descriptions before prediction.
Instead, encoder-decoder models (i.e., models that include
both the encoder and decoder of the Transformer) such as
CodeT5 are suitable for this purpose, as they can generate
token sequences of arbitrary length through the decoding
process. Specifically, the decoder keeps generating tokens
until it reaches the <EOS>token, ensuring that the length

3https://huggingface.co/Salesforce/codet5-base

Description to be recovered

Figure 5. Noised Docstring after Masking the Description of lum

of the generated description is appropriate for the input
code context.

3) Random Parameter Description Masking: We randomly
mask the parameter descriptions in method docstrings to create
the training examples for the continual pre-training. Our ap-
proach currently focuses on the Java language, and we collect
the Java code corpus, CodeSearchNet [23], which is utilized by
the base model CodeT5 during its pre-training phase. The Java
code corpus is divided into three parts upon release, namely the
training set, validation set, and test set, with CodeT5 being pre-
trained on the training set. We take the training set and process
all the instances in the following manner. For each instance,
which includes a method code and its corresponding docstring,
we first use a regular expression to match the lines in the
form of ”@param [paramName] [description]” to find all the
parameter descriptions in the docstring. If the docstring does
not contain any parameter descriptions, the instance is skipped.
Otherwise, we randomly sample one of the descriptions, mask
it with <MASK>, and obtain a noised docstring. For example,
consider the method and docstring in Figure 3, we can mask
the description of the parameter lum (i.e., “The min and max
luminance”), resulting in a noised docstring shown in Figure 5.
Subsequently, a training example (x, y) is generated, where x
is the concatenation of the noised docstring and the method
code, and y is the masked description that is expected to
be recovered. Based on the random description masking, we
totally obtain 424,701 training examples.

4) Model Continual Pre-training: To continually pre-train
the base model CodeT5, we utilize the collected training
examples as follows. We begin by tokenizing each training
example (xi, yi) into token sequences txi and tyi, respectively,
using the byte-level BPE tokenizer [24] that is trained by
CodeT5. Next, we feed the token sequence txi into the encoder
of CodeT5 to compute the contextual embeddings. Finally, we
train CodeT5 to use its decoder to generate a token sequence
ty′i that minimizes the cross-entropy loss between ty′i and yi
(the same to span masking objective [20]). The cross-entropy
loss measures the dissimilarity between two probability distri-
butions by calculating the negative log-likelihood of the correct
distribution yi given the predicted distribution ty′i. To train the
model parameters, we utilized the Adam optimizer [25] and
set the training epoch number, learning rate, and batch size
to 3, 1e-5, and 8, respectively. We denote the continually pre-
trained CodeT5 as CodeT5-param.



B. Zero-shot Prompt Learning for Variable Explanation Gen-
eration

In this stage, we formulate the problem of variable expla-
nation generation in a same format to that of the parameter
description generation task and construct appropriate prompts
to leverage the model’s ability.

1) Automatic Prompt Construction: Given a method code
snippet md and a variable var within it that requires explana-
tion, we automatically construct a prompt for them as follows.
If there are no corresponding docstrings for the method, we
use the Unixcoder model [15] to generate a docstring in
the desired format (e.g., javadoc format for Java language).
We select the Unixcoder model4 as the docstring generation
model since it can generate docstrings directly without any
further fine-tuning, while most other models, such as CodeT5,
only generate one-sentence method summaries. Subsequently,
we add a line @param var <MASK> underneath the final
parameter in the docstring to simulate the variable var as
a special parameter in the method. We then concatenate the
noised docstring, after inserting var, with the md to form the
prompt that is used as input to the continually pre-trained
model (i.e., CodeT5-param). It should be noted that each
prompt is constructed for explaining a single variable, and
hence, multiple individual prompts need to be constructed
when there are multiple variables to explain in a method.

To illustrate the process, we use the example method
presented in Figure 1(a). First, we generate the corresponding
docstring using the Unixcoder model, as shown in Figure 2.
Then, we insert a line “@param lumR <MASK>” for the
variable lumR into the docstring, and concatenate the modified
docstring with the method to create a prompt, as shown in
Figure 6.

2) Variable Explanation Generation: We tokenize the con-
structed prompt and feed it into the encoder of the continually
pre-trained CodeT5-param using the same approach as in the
continual pre-training, as explained in Section III-A4. This
allows the docoder of CodeT5-param to generate explanations
(beam search can be applied during the docoding steps [26],
[27]) for the variable var that describe its meaning based on
the modified docstring and code context.

For example, for the prompt shown in Figure 6, we use
the continually pre-trained CodeT5-param to generate expla-
nations for the variable lumR based on this prompt. The model
generates two possible explanations for lumR, which are “The
luminance” and “The color red”.

IV. EVALUATION

We perform extensive experiments to evaluate both the qual-
ity and usefulness of the variable explanations generated by
ZEROVAR. For quality, we create a reference dataset compris-
ing 773 variables and their reference explanations to evaluate
the quality of generated variable explanations. In particular,
we include both automated metrics and human evaluation
metrics: (i) the automated metrics assess whether the variable

4https://huggingface.co/microsoft/unixcoder-base

Generated explanations

Figure 6. Constructed Prompt for the Variable lumR in Figure 1(a)

explanations generated by ZEROVAR are textually similar
to the references (RQ1.a), and (ii) the human evaluation
metrics evaluate whether the quality of the generated variable
explanations is sufficient for human understanding (RQ1.b).
For usefulness, we evaluate the usefulness of ZEROVAR by
investigating how its generated variable explanations could
help improve the quality of variable naming. To this end, we
investigate whether the variable explanations generated by ZE-
ROVAR are useful in two downstream variable naming tasks,
i.e., abbreviation expansion (RQ2.a) and spelling correction
(RQ2.b).

All the research questions are listed as follows.
• RQ1 (Quality)

– RQ1.a (Automated Metrics): How textually similar
are the variable explanations generated by ZEROVAR
to the references in terms of automated metrics?

– RQ1.b (Human Evaluation Metrics): How is the
quality of the explanations generated by ZEROVAR for
variable understanding on human metrics?

• RQ2 (Usefulness)
– RQ2.a (Abbreviation Expansion): How can the vari-

able explanations generated by ZEROVAR boost abbre-
viation expansion?

– RQ2.b (Spelling Correction): How can the variable
explanations generated by ZEROVAR boost variable
spelling correction?

All the data can be found in our replication package5.

A. RQ1.a: Quality on Automated Metrics

We collect a reference dataset and investigate the textually
similarity between the generated explanations and the refer-
ences on automated metrics.

1) Dataset: We collect inline comments from the test set of
Java language in CodeSearchNet to build a reference dataset
for variable explanations. For each method in the test set, we
use javalang [28] to convert it to an abstrct syntax tree (AST)
and extract all variable declarations in it. For each variable
declaration, we check whether the first previous non-empty
line is a inline comment. If it is, we remove the inline comment
from the method and produce a data instance consisting of

5https://anonymous.4open.science/r/VarExp-481D/README.md
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Figure 7. Constructed Prompt for Baseline Approach

the method, the variable name, and the inline comment. After
processing all the methods, we obtained 3,565 such instances.
Furthermore, we automatically and manually filter out the
instances that meet one of the following criteria:
Automatic filtering includes three criteria: (i) the comment
contains non-English text; (ii) the length of the comment
exceeds 10 words, which may suggest that it explains code
blocks rather than individual variables; (iii) after stopword
removal, the number of words in the comment is equal to
or less than the number of tokens in the variable name (i.e.,
non-informative comment).
Manual filtering involves assessing the relevance of com-
ments to the variable meaning based on the code context. The
comments that are confirmed to be relevant to the variable
meaning are retained. In addition, if a comment can be con-
verted to a variable explanation through minor modifications,
such as removing starting verbs, it is modified and retained.
This process is conducted through discussions between two of
the authors.
Through the filtering, we obtain the reference dataset contain-
ing 773 instances, where the method and variable are the input,
and the comment serves as the reference explanation.

2) Baseline: As demonstrated, we can acquire variable
explanations to a certain extent from inline comments that
come before variable declarations. To this end, we introduce
a baseline approach based on prompt learning, which involves
adding an inline-comment-like prompt “// <MASK>” before
the declaration statement of the variable that requires an
explanation. For instance, in Figure 1(a), we add the line “//
<MASK>” before “float lumR = 0.213f;” to create a prompt
for the variable lumR. We then leverage CodeT5 for generating
the variable explanations from the prompt. We choose CodeT5
for the baseline because it is pre-trained on the span masking
objective and used as the base model in ZEROVAR.

3) Metrics: BLEU (Bilingual Evaluation Understudy) [16]
and ROUGE (Recall-Oriented Understudy for Gisting Evalu-
ation) [17] are two popular evaluation metrics for text gener-
ation tasks.

BLEU is a metric commonly used to evaluate the quality
of machine-generated text by comparing it to one or more
reference texts. It measures the similarity between the gen-
erated text and the reference texts by computing the N-gram
(continuous n words) overlap between them. BLEU considers
precision (how many N-grams in the generated text are in the
reference text) and brevity (how much shorter or longer the
generated text is compared to the reference text). The resulting

Table I
SIMILARITY BETWEEN GENERATED AND REFERENCE EXPLANATIONS

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Baseline 0.317 0.216 0.162 0.122 0.306 0.120 0.298

ZEROVAR 0.351 0.253 0.186 0.126 0.445 0.240 0.430

score ranges from 0 to 1, where higher scores indicate better
quality.

ROUGE is another metric used to evaluate the quality of text
generation systems. It also measures the similarity between the
generated text and the reference texts by computing the overlap
between their N-grams. ROUGE considers recall (how many
N-grams in the reference text are in the generated text). The
resulting score ranges from 0 to 1, where higher scores indicate
better quality.

Both BLEU and ROUGE have several variations, such as
BLEU-1, BLEU-2, BLEU-3, and BLEU-4, which represent the
N-gram order used in the computation. Similarly, ROUGE-1,
ROUGE-2, and ROUGE-L are the most commonly used vari-
ations of the metric. We tokenize the generated explanations
and reference explanations into words and then compute the
BLEU and ROUGE metrics following the descriptions in [16]
and [17].

4) Evaluation Procedure: For each instance (md, var, ref)
in the reference dataset, we use the method md and
the variable var to create two prompts, pmptZEROVAR and
pmptbaseline, for ZEROVAR and the baseline, respectively.
Next, we input pmptZEROVAR into ZEROVAR to gener-
ate a variable explanation, expZEROVAR, while the baseline
takes pmptbaseline to generate its own variable explanation,
expbaseline. Finally, we calculate the BLEU and ROUGE
metrics based on ref , expZEROVAR, and expbaseline.

5) Results: Table I presents the evaluation results of ZE-
ROVAR and the baseline. The results show that ZEROVAR
outperforms the baseline on all BLEU (+3.3%∼21.0%) and
ROUGE (+44.3%∼100.0%) metrics . It is worth noting
that BLEU and ROUGE are precision- and recall-oriented
metrics, respectively. Therefore, ZEROVAR produces variable
explanations that have better N-gram overlapping with the ref-
erence explanations while introducing less noise. In particular,
ZEROVAR achieves a significant advantage on ROUGE, indi-
cating that the explanations generated by ZEROVAR provide a
more comprehensive explanation of the variable meanings.

ZEROVAR and the baseline are both based on prompt
learning, but differ in the way the prompt is constructed.
ZEROVAR achieves better results because we formalize the
variable explanation problem as parameter description genera-
tion task, which naturally aligns the downstream problem and
pre-training objective in both form and purpose. Although the
baseline also achieves formal alignment between the down-
stream problem and pre-training objective (i.e., span masking)
through inline-comment prompts, the primary purpose of most
inline comments is not to explain variables, resulting in a
significant gap between the downstream problem and pre-
training objective.



Finding 1: Our proposed approach, ZEROVAR, is capable
of generating variable explanations that are more similar to
the reference explanations than the baseline, as evidenced
by the improvements on all BLEU and ROUGE metrics.
Moreover, the prompt constructed by ZEROVAR facilitates
better knowledge transfer between the downstream prob-
lem and pre-training objective.

B. RQ1.b: Quality on Human Metrics
In fact, the reference variable explanations we collect

through inline comments may have quality issues. Although
we ensure the final reference explanations are relevant to the
variables through manual filtering, the original purpose of
inline comments is not to explain variables, so they may not
fully reflect the meaning of the variables. Therefore, we further
evaluate the quality of the generated explanations through an
emprical evaluation on some human metrics.

1) Dataset: We randomly sample 30 instances from the
reference dataset and take the explanations generated by
ZEROVAR and the baseline for evaluation.

2) Participants: We invite 10 developers who have more
than 3 years of Java programming experience to participate
in this evaluation. These developers have not been involved
in this work before and thus have no potential conflicts of
interest.

3) Metrics: We consider the following metrics for the
evaluation, assessed based on a 4-point Likert scale [29] (1-
disagree; 2-somewhat disagree; 3-somewhat agree; 4-agree),
similar to previous works [30], [31], [32], [33], [34]:

• Correctness: The explanation correctly explains the vari-
able.

• Completeness: The explanation contains all the necessary
information for explaining the variable.

• Conciseness: The explanation contains no unnecessary or
redundant information for explaining the variable.

4) Evaluation Procedure: For each sampled instance, we
mix the reference, the explanation generated by ZEROVAR,
and the explanation generated by the baseline. The participants
are asked to rate the three versions of explanations in terms
of correctness, completeness, and conciseness on the 4-point
Likert scale according to the metric statements. Note that in
order to reduce bias, the second statement (i.e., the statement
for completeness) are phrased negatively to maintain the
interpretation of the answers similar to all three statements.
After the participants finish the evaluation, we ask them to
explain their low ratings (i.e., 1 or 2).

5) Results: The results of the ratings for the different ex-
planations are shown in Table II and Figure 8. For correctness
of ZEROVAR, 64.7% of the answers are 4 (agree), 32.0%
are 3 (somewhat agree), 3.0% are 2 (somewhat disagree),
and 0.3% are 1 (disagree) answers. For completeness of
ZEROVAR, 63.0% of the answers are 4 (agree), 32.0% are 3
(somewhat agree), 4.7% are 2 (somewhat disagree), and 0.3%
are 1 (disagree). For conciseness of ZEROVAR, 35.7% of the
answers are 4 (agree), 45.7% are 3 (somewhat agree), 16.0%
are 2 (somewhat disagree), and 2.6% are 1 (disagree) answers.

Table II
RATINGS OF CORRECTNESS, COMPLETENESS, AND CONCISENESS

Correctness Completeness Conciseness
1 2 3 4 1 2 3 4 1 2 3 4

Baseline 38 130 90 42 40 147 83 30 34 111 90 65
Reference 7 41 131 121 18 105 128 49 2 33 119 146
ZEROVAR 1 9 96 194 1 14 96 189 8 48 137 107

Figure 8. Ratings of Correctness, Completeness, and Conciseness

The ratings for the explanations generated by ZEROVAR
are much better than the baseline on all three metrics. To
verify the statistical significance of the difference between
the participants’ ratings on the explanations generated by
ZEROVAR and the baseline, we use a two-sided independent T-
test [35]. The null hypothesis is that the ratings of correctness,
completeness, and conciseness for the two independent groups
have identical average (expected) values. The results indicate
that for each metric, the statistical difference is significant
(p << 0.01), leading to the rejection of the null hypothesis.
Compared to the reference, the ratings for the explanations
generated by ZEROVAR are much better on correctness and
completeness and worse on conciseness.

The results suggest that ZEROVAR generates more accurate
and comprehensive explanations for variables, indicating that
developers can obtain a better understanding of the variable
meanings by reading the explanations generated by ZEROVAR
than the inline comments. This also confirms that there is a
quality problem in the variable explanations collected using
inline comments, which can only be used as references rather
than ground truth. Furthermore, the results also highlight the
difficulty of obtaining high-quality variable explanations as
training data, emphasizing the necessity and value of zero-shot
prompt learning. For conciseness, we analyze the feedback
of participants and find that the main reason for the lower
conciseness ratings than references is that the explanations
generated by ZEROVAR are generally longer and unnecessary
for some simple variables.

Finding 2: Our approach, ZEROVAR, has demonstrated
its capability to generate variable explanations that are
correct, complete, and concise. These explanations can
effectively support developers in gaining an accurate and
comprehensive understanding of variable meanings.



C. RQ2.a: Usefulness for Abbreviation Expansion
Most abbreviation expansion approaches [36], [37], [38],

[39], [40], [41], [42], [43], [18] can generally be divided
into two steps: (i) identifying candidate expansions for ab-
breviations by exploiting certain contexts, such as words in
code comments; and (ii) ranking the candidates based on
some strategies, such as leveraging learning models. Thus, the
coverage of the exploited contexts (i.e., the possibility of in-
cluding the correct expansion) is a crucial factor that affects the
performance of abbreviation expansion. In this evaluation, we
aim to explore the effectiveness of utilizing the explanations
generated by our approach to enrich the exploited contexts
and improve the performance of KgExpander [18], which is a
state-of-the-art approach for abbreviation expansion.

1) Dataset: We utilize the dataset created by Jiang et
al. [18] to evaluate KgExpander, consisting of 9 open-
source projects from diverse application domains, namely,
DB-Manager, Batik, Portecle, PDFsam, Retrofit, Bootique,
CheckStyle, Maven, and FileBot. The dataset comprises 200
abbreviations sampled from identifiers in each project, which
are manually expanded to their corresponding expansions. We
only considered abbreviations that originate from variables
and exclude those from other identifiers, such as method
names, resulting in an dataset of 868 abbreviations and their
corresponding expansions.

2) Context Enrichment: For each abbreviation in the
dataset, we locate the variable it originates from and retrieve
the enclosed method code. Then, we utilize ZEROVAR to gen-
erate an explanation for the variable and insert it as an inline
comment before the declaration statement of the variable. The
generated explanation is then used as additional exploited
context by KgExpander during the abbreviation expansion
process, as KgExpander will consider the inline comments
when identifying candidate expansions for abbreviations from
variables [18].

3) Evaluation Procedure: We conduct two separate runs
of KgExpander on the original projects and the enriched
projects, respectively. Note that, to better focus on the effects
of the exploited contexts, we remove the two abbreviation
dictionaries that KgExpander uses for its original evaluation.
The evaluation is conducted on two metrics to assess the
usefulness of the generated explanations for enriching the
exploited contexts. The first metric is the present rate, which
measures the proportion of correct expansions that are present
in the exploited contexts. This metric is an indicator of the
coverage of the exploited contexts. The second metric is
precision and recall, which measure the accuracy of the ex-
panded abbreviations and the proportion of correct expansions
generated by KgExpander, respectively. These two metrics
provide a comprehensive evaluation of the overall expansion
performance.

4) Results: Table III presents the evaluation results. As
shown in the table, the expansion performance is improved in
all the metrics after the enrichment. Specifically, the present
rate, precision, and recall gain an improvement of 13.1%,
3.6%, and 10.0%, respectively.

Table III
COMPARISON RESULTS OF ABBREVIATION EXPANSION

Present Rate % Precision % Recall %
Before Enrichment 66.1% 45.0% 40.2%
After Enrichment 74.9% 46.6% 44.2%

The improved present rate suggests that the explanations
generated by ZEROVAR can provide correct expansions of ab-
breviations that are missing in the original exploited contexts.
One of the benefits of this is that KgExpander can now provide
correct expansions for the abbreviations that were previously
unexpandable or incorrectly expanded, resulting in improved
precision and recall.

Finding 3: The usefulness of the explanations generated
by ZEROVAR in enhancing the performance of abbrevia-
tion expansion is confirmed. The enriched context by these
explanations enables KgExpander, a SOTA abbreviation
expansion approach, to achieve higher present rate, preci-
sion, and recall.

D. RQ2.b: Usefulness for Variable Spelling Correction

To investigate the usefulness of the generated explanations
for variable spelling correction, we construct a variable mis-
spelling dataset similar to previous work by Chen et al. [19]
and develop a lightweight spelling correction approach.

1) Dataset: Similar to Chen et al., we perturb variables to
generate the misspelling dataset. Specifically, for each Java
method in the CodeSearchNet test set, we use javalang [28]
to parse it into an AST and extract variable names by looking
up variable declaration nodes. In this way, we collect a set of
18,093 different variable names. For each collected variable
name, we then find a method that contains the variable in
the CodeSearchNet test set. Note that we do not directly
use the variable name set adopted by Chen et al. in their
spelling correction experiment because those variable names
were collected from JavaScript code, which is difficult to find
their code contexts in CodeSearchNet. There is no bias due
to language difference here because Chen et al. trained their
model using variable names extracted from C# code, which are
also different from the variable names used in their spelling
correction experiment. Next, we sample 1,023 (the same to
Chen et al.) variable names from the collected variable name
set and use nlpaug [44] tool to perturb the words in a similar
way (i.e., simulating keyboard distance errors) as Chen et al. to
generate misspelling instances. During this process, we replace
all occurrences of these variables in the corresponding method
code with the perturbed variable names and ensure that there
are no correct corrections in other parts of the same code
contexts (e.g., other identifier names).

2) Our Correction Approach: For a given perturbed vari-
able, we utilize ZEROVAR to generate three explanations, and
use the words contained in these explanations as a spelling set,
denoted as S. We then split the perturbed variable name into
a word sequence V = [w1, w2, ..., wN ] using camel case, and
attempt to replace at least one word in V with a word from the



spelling set S. After such replacement, we obtain a candidate
correction V ′ = [w′

1, w
′
2, ..., w

′
N ] for the variable. Since both

the variable and the spelling set contain multiple words, there
are multiple possible replacement combinations resulting in
different candidate corrections. Thus, we need to select the
optimal one. To achieve this, we design a method based on edit
distance to calculate the replacement cost for each candidate
correction V ′. Specifically, we first measure the cost of replac-
ing a word wi ∈ V with a word w′

i ∈ V ′ using the normal-
ized Damerau-Levenshtein distance, denoted as DL(wi, w

′
i).

The Damerau-Levenshtein distance is the minimum number
of operations required to change wi into w′

i, which may
include insertions, deletions, substitutions of a single character,
or transposition of two adjacent characters. The normalized
DL(wi, w

′
i) (denoted as normalized-DL(wi, w

′
i)) is calcu-

lated by dividing DL(wi, w
′
i) by the maximum length of wi

and w′
i, represented as max(|wi|, |w′

i|), where |wi| and |w′
i|

denote the lengths of wi and w′
i, respectively. The overall cost

of the candidate correction V ′ is the sum of the replacement
costs for all the words in V , expressed as follows:

cost(V → V ′) =

N∑
i=1

normalized-DL(wi, w
′
i)

Finally, we can select the top K candidate corrections with the
lowest costs and convert them into camel-case variable names,
which become the final corrections for the perturbed variable.

3) Baseline: We adopt VarCLR, a model proposed by Chen
et al., as our baseline approach. VarCLR is an embedding
model that is trained on variable renaming histories to measure
the similarity between variables. To apply VarCLR on the
spelling correction task, a set of candidate corrections needs
to be chosen and their embedding vectors are generated. For
a given perturbed variable, VarCLR generates an embedding
vector and calculates the cosine similarity between it and all
the candidates based on their embedding vectors. The top K
candidate with the highest similarity scores are selected as the
final corrections for the perturbed variable. In our evaluation,
we use a set of 18,093 variable names that we collected as the
candidate corrections for VarCLR. This enables us to ensure
that the expected corrections are incorporated for the VarCLR
approach.

4) Evaluation Procedure: we apply both our correction
approach and the baseline approach to each instance in the
misspelling dataset to obtain their respective corrections for
the perturbed variable. Following Chen et al., we employ the
metrics hit@1 and hit@3 to measure the correction accuracy.
Specifically, hit@1 indicates whether the expected correction
appears as the top one candidate, while hit@3 indicates
whether it appears within the top three candidates.

5) Results: Table IV displays the evaluation results for
our proposed lightweight correction approach and the baseline
approach. The results demonstrate that our approach outper-
forms the baseline by a significant margin, achieving a 162.9%
improvement on hit@1 and a 49.6% improvement on hit@3.
This highlights the effectiveness of our approach in accurately
correcting misspelled variable names.

Table IV
COMPARISON RESULTS OF VARIABLE SPELLING CORRECTION

hit@1 % hit@3 %
Baseline (VarCLR) 6.2% 11.7%

Our Correction Approach 16.3% 17.5%

In fact, both our correction approach and the baseline ap-
proach rely on selecting candidate corrections based on some
similarity/distance measures. However, our approach achieves
higher accuracy for two main reasons. First, the variable
explanations generated by ZEROVAR include the expected
corrections, despite the perturbations in the variables. This
suggests that ZEROVAR can filter out the noise caused by
the misspellings and reveal the true meaning of the variables.
Second, we select the final correction from a much smaller
candidate set (constructed from generated explanations) than
the baseline approach. Although the larger candidate set
used by the baseline ensures the inclusion of the expected
corrections, it makes it difficult for the baseline approach to
distinguish between similar candidates, whereas our approach
can more accurately identify the best candidate correction.

Finding 4: The usefulness of the explanations generated
by ZEROVAR in improving variable spelling correction
is confirmed by our evaluation. Our lightweight correc-
tion approach, which uses the explanations as candidate
corrections, achieves better accuracy on both hit@1 and
hit@3 metrics compared to the baseline.

V. DISCUSSION

A. Prompt Engineering

In this paper, we employ zero-shot prompt learning to gen-
erate variable explanations by leveraging pre-trained models.
The effectiveness of prompt learning, in fact, heavily relies
on the quality of the designed prompts, especially for few-
shot and zero-shot scenarios. For the same problem, different
modeling approaches can be aligned to different pre-training
objectives and be designed with different prompt templates.
This is known as prompt engineering.

If a large-scale pre-trained model is used, such as GPT-
3 (175 billion model parameters), the problem is typically
transformed into an autoregressive text generation form by
continuing to generate subsequent content from left to right
based on the previous text. This is because these large-scale
models are mostly decoder-only architectures trained through
autoregression. However, for small-scale models like CodeT5
(220 million model parameters), problem modeling is crucial,
and different problem modeling methods will require different
prompt templates and produce different results. For instance, in
our variable explanation problem, our approach ZEROVAR and
the baseline approach in RQ1.a respectively model the prob-
lem as a parameter explanation generation task and an inline
comment generation task. Both modeling approaches can align
the problem in form to the span masking objective of CodeT5
pre-training stage. However, there are significant differences in
the prompt templates required by the two approaches, and the



quality of the generated explanations also differs greatly from
the results of RQ1.a and RQ1.b. The parameter explanation
generation task is more natural in purpose for variable expla-
nation problem than the inline comment generation task, and
it can better utilize the knowledge learned by the pre-trained
model during pre-training (see Section IV-A5).

B. More Applications

We evaluate the quality of the explanations generated by
our app, and the experimental results demonstrate that the
quality of the generated explanations is relatively high. Such
high-quality explanations are helpful for developers to gain
an accurate and comprehensive understanding of variable
meanings. In addition to abbreviation expansion and spelling
correction, the generated variable explanations may also be
used in more other applications. Some possible application
scenarios are presented below.

For code search, the generated explanations can serve as
additional information to enhance the context of the code
and bridge the lexical gap between the search query and
the code [45], thereby improving accuracy. For code com-
prehension, the generated explanations can help link the
terms in variables to corresponding concepts, thereby helping
developers better understand and reuse code [46]. For code
review, the generated explanations can help reviewers better
understand the code and identify any potential issues. For
mining approaches [47], [48] rely on code identifiers, the the
generated explanations can boost these approach by providing
more meaningful contexts.

C. Threats to Validity

The threats to the internal validity of our studies lie in the
randomness of data sampling and the subjectiveness in data
annotation. To mitigate these threats, we follow commonly-
used data sampling strategy and mix explanations from dif-
ferent sources, and involve multiple annotators to minimize
preference bias. The threats to the external validity lies in
the benchmarks used by our work, which cannot guarantee
the generality of our findings. To minimize such threats, we
leverage a large scale of code corpus and include two different
application scenarios for evaluation. We believe it is interest-
ing future work to extend ZEROVAR to other programming
languages and incorporating ZEROVAR with more variable
relevant downstream applications.

VI. RELATED WORK

A. Code Explanation Generation

Code explanation generation has been approached from
various angles, leading to a number of techniques in the field.

Code Summarization. Deep learning models have been
employed to improve the performance of code summariza-
tion [2], [3], [4], [5], [6], [7] based on code contexts. These
approaches generate method-level summaries for code. How-
ever, generating fine-grained variable explanations presents a
new challenge, as such explanations do not exist in the wild.
Therefore, it is infeasible to train a model based on an existing

corpus of code and its relevant variable explanations. In our
work, we address this challenge by constructing prompts with
the target variables in the format of docstring and enabling
zero-shot learning with pre-trained language models.

Parameter Description. Some research have investigated
the issues about parameter descriptions in code summariza-
tion [49] and proposed parameter description generation ap-
proaches [50], [51]. These approaches generate descriptions
for method formal parameters based on heuristic rules or
learning models, but they are not designed for variables. In this
work, we consider variables as special parameters and leverage
code pre-trained models and prompt learning to generate high-
quality variable explanations.

Code Augmentation. Previous research has attempted to
augment code by leveraging external resources such as Stack
Overflow discussions relevant to a given API or code snip-
pet [52], [53], [54] or extracting concept explanations from
Wikipedia using identifiers [46]. Our work provides fine-
grained explanations for variables based solely on code con-
texts without relying on external resources. Furthermore, our
approach can potentially enhance these previous studies by
providing more comprehensive and accurate meanings of
variables.

B. Prompt Learning

Prompt learning is a recent and promising approach that has
been applied to various natural language processing tasks.

Pre-trained Language Models as Knowledge Bases.
Recent studies have demonstrated that pre-trained language
models (PLMs) can be utilized as knowledge bases by using
synthetic tasks similar to the pre-training objective to retrieve
the knowledge/information stored in the models [13], [55].
These works have shown that language models can recall
factual knowledge without any fine-tuning by using proper
prompts. In our work, we also consider code PLMs as
knowledge bases that contain explanations of parameters and
variables. We leverage zero-shot prompt learning to retrieve
the knowledge necessary for explaining variable meanings.

Prompt Engineering. Several works have focused on ex-
ploring effective prompt templates to improve performance of
PLMs on downstream problems. In a recent survey by Liu
et al. [56], prompt templates are broadly classified into two
categories: cloze prompts [57], [13], which entail filling in the
blanks in text or code, and prefix prompts [58], [59], which
continue generating content following a specified prefix. In our
study, we consider the unique characteristics of our problem
and devise a cloze prompt template to fill in missing descrip-
tions in method docstrings. This prompt template naturally
aligns the variable explanation problem with the pre-training
objective of description masking.

Prompt Learning in Software Engineering. Recent stud-
ies have explored the application of prompt learning in various
software engineering tasks. Wang et al. [60] investigated the
effectiveness of prompt learning in code intelligence tasks such
as clone detection and code summarization. Huang et al. [61]
used prompt learning for type inference. In contrast, our work



introduces a novel prompt learning approach for generating
variable explanations, which is a crucial problem in software
engineering.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a new approach for generating
variable explanations called ZEROVAR, which utilizes code
pre-trained models and zero-shot prompt learning. The ap-
proach consists of two stages: (i) a continual pre-training stage
where a base model, CodeT5, is continually pre-trained using
the description masking objective, and (ii) a zero-shot prompt
learning stage where a prompt is created based on the given
method and variable, and the continually pre-trained model
is used to generate the variable explanations. To evaluate the
effectiveness of ZEROVAR, we collected a dataset containing
773 reference variable explanations. Our evaluation results
demonstrate that ZEROVAR generates higher quality expla-
nations compared to the baseline approach, not only based
on automated metrics such as BLEU and ROUGE, but also
based on human metrics such as correctness, completeness,
and conciseness. Moreover, we conducted two experiments
to examine the usefulness of the generated explanations in
improving variable naming quality, specifically in abbreviation
expansion and spelling correction. Our experimental results
confirm the usefulness of ZEROVAR in enhancing these two
applications. Future research may explore the potential of ZE-
ROVAR in generating variable explanations for other program-
ming languages and incorporating it with more downstream
applications.
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mation retrieval based coupling measures for impact analysis,” Empirical
software engineering, vol. 14, pp. 5–32, 2009.

[9] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, 2016.

[10] M. J. Kaelbling, “Programming languages should not have comment
statements,” ACM SIGPlan Notices, vol. 23, no. 10, pp. 59–60, 1988.
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[13] F. Petroni, T. Rocktäschel, S. Riedel, P. S. H. Lewis, A. Bakhtin,
Y. Wu, and A. H. Miller, “Language models as knowledge bases?” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019. Association for Computational Linguistics,
2019, pp. 2463–2473.

[14] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 2021, pp. 8696–8708.

[15] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022. Association for Computational Linguistics, 2022, pp.
7212–7225.

[16] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, July
6-12, 2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.

[17] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[18] Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expansion of
abbreviations,” in Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. ACM, 2019, pp. 131–141.

[19] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and C. L.
Goues, “Varclr: Variable semantic representation pre-training via con-
trastive learning,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 2327–2339.

[20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
pp. 140:1–140:67, 2020.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 2017, pp. 5998–6008.

[22] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, ser. Findings of ACL, vol. EMNLP 2020. Association
for Computational Linguistics, 2020, pp. 1536–1547.

[23] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
CoRR, vol. abs/1909.09436, 2019.



[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[26] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

[27] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks.” in ISMIR. Curitiba, 2013,
pp. 335–340.

[28] (2023) javalang. [Online]. Available: https://github.com/c2nes/javalang
[29] R. Likert, “A technique for the measurement of attitudes.” Archives of

psychology, 1932.
[30] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and

V. Shanker, “Automatic Generation of Natural Language Summaries
for Java Classes,” in 21st IEEE International Conference on Program
Comprehension (ICPC’13). San Francisco, USA: IEEE, 2013, pp. 23–
32.

[31] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards Automatically Generating Summary Comments for Java Meth-
ods,” in 25th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’10), Antwerp, Belgium, 2010, pp. 43–52.

[32] M. Liu, X. Peng, A. Marcus, Z. Xing, W. Xie, S. Xing, and Y. Liu,
“Generating query-specific class API summaries,” in Proceedings of
27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, August 26-30, 2019, Tallinn, Estonia, 2019,
pp. 120–130.

[33] Y. Liu, M. Liu, X. Peng, C. Treude, Z. Xing, and X. Zhang, “Generating
concept based api element comparison using a knowledge graph,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 834–845.

[34] M. Liu, X. Peng, A. Marcus, C. Treude, J. Xie, H. Xu, and Y. Yang,
“How to formulate specific how-to questions in software development?”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 306–318.

[35] A. Ross and V. L. Willson, “Two-sided independent t-test,” in Basic and
advanced statistical tests. Springer, 2017, pp. 9–12.

[36] E. Adar, “Sarad: a simple and robust abbreviation dictionary,” Bioin-
form., vol. 20, no. 4, pp. 527–533, 2004.

[37] B. Caprile and P. Tonella, “Restructuring program identifier names,”
in Proceedings of the 2000 International Conference on Software
Maintenance, ICSM 2000, San Jose, California, USA, October 11-14,
2000. IEEE Computer Society, 2000, pp. 97–107.

[38] N. Madani, L. Guerrouj, M. D. Penta, Y. Guéhéneuc, and G. Antoniol,
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